126 research outputs found

    Probabilistic forecast of daily areal precipitation focusing on extreme events

    Get PDF
    A dynamical downscaling scheme is usually used to provide a short range flood forecasting system with high-resolved precipitation fields. Unfortunately, a single forecast of this scheme has a high uncertainty concerning intensity and location especially during extreme events. Alternatively, statistical downscaling techniques like the analogue method can be used which can supply a probabilistic forecasts. However, the performance of the analogue method is affected by the similarity criterion, which is used to identify similar weather situations. To investigate this issue in this work, three different similarity measures are tested: the euclidean distance (1), the Pearson correlation (2) and a combination of both measures (3). The predictor variables are geopotential height at 1000 and 700 hPa-level and specific humidity fluxes at 700 hPa-level derived from the NCEP/NCAR-reanalysis project. The study is performed for three mesoscale catchments located in the Rhine basin in Germany. It is validated by a jackknife method for a period of 44 years (1958–2001). The ranked probability skill score, the Brier Skill score, the Heidke skill score and the confidence interval of the Cramer association coefficient are calculated to evaluate the system for extreme events. The results show that the combined similarity measure yields the best results in predicting extreme events. However, the confidence interval of the Cramer coefficient indicates that this improvement is only significant compared to the Pearson correlation but not for the euclidean distance. Furthermore, the performance of the presented forecasting system is very low during the summer and new predictors have to be tested to overcome this problem

    Gaussian and non-Gaussian inverse modeling of groundwater flow using copulas and random mixing

    Get PDF
    This paper presents a new copula-based methodology for Gaussian and non-Gaussian inverse modeling of groundwater flow. The presented approach is embedded in a Monte Carlo framework and it is based on the concept of mixing spatial random fields where a spatial copula serves as spatial dependence function. The target conditional spatial distribution of hydraulic transmissivities is obtained as a linear combination of unconditional spatial fields. The corresponding weights of this linear combination are chosen such that the combined field has the prescribed spatial variability, and honors all the observations of hydraulic transmissivities. The constraints related to hydraulic head observations are nonlinear. In order to fulfill these constraints, a connected domain in the weight space, inside which all linear constraints are fulfilled, is identified. This domain is defined analytically and includes an infinite number of conditional fields (i.e., conditioned on the observed hydraulic transmissivities), and the nonlinear constraints can be fulfilled via minimization of the deviation of the modeled and the observed hydraulic heads. This procedure enables the simulation of a great number of solutions for the inverse problem, allowing a reasonable quantification of the associated uncertainties. The methodology can be used for fields with Gaussian copula dependence, and fields with specific non-Gaussian copula dependence. Further, arbitrary marginal distributions can be considered

    Regionalizing nonparametric models of precipitation amounts on different temporal scales

    Get PDF
    Parametric distribution functions are commonly used to model precipitation amounts at gauged and ungauged locations. Nonparametric distributions offer a more flexible way to model precipitation amounts. However, the nonparametric models do not exhibit parameters that can be easily regionalized for application at ungauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate the usage of daily gauges for sub-daily resolutions

    Statistical downscaling to project extreme hourly precipitation over the United Kingdom

    Get PDF
    Observed trends, theory and modelling results all suggest increases in future extreme precipitation due to climate warming. The largest increases are expected in short‐duration events with less than a day. Relatively few previous studies have focused specifically on the projection of sub‐daily precipitation extremes. In this study, a statistical downscaling method based on circulation patterns (CPs) is developed to project site‐specific extreme hourly precipitation over the UK. First, a CP‐classification categorizes extreme hourly precipitation events based on the underlying atmospheric pressure conditions on each day. An analogue day method is then used to find for each future day the most similar day in the past by comparing the predictor values of daily precipitation and temperature simulated by Regional Climate Models (RCMs) with observations conditioned on different CPs and seasons. Finally, the maximum hourly precipitation records on the most similar days are extracted and perturbed using precipitation duration‐temperature relationships. The applied statistical downscaling method is a combination of the analogue and the regression‐based method. It is found that the statistical downscaling method is able to reproduce observed extreme hourly precipitation. In terms of future changes under a warmer climate, it is shown that increases in extreme hourly precipitation can be as high as 112% but are highly variable depending on the rainfall stations, the future time periods, the emission scenarios, and the different RCM runs

    Rainfall estimates from opportunistic sensors in Germany across spatio-temporal scales

    Get PDF
    Study region: The study region is Germany and two sub-regions in Germany, i.e. the state of Rhineland-Palatinate and the city of Reutlingen. Study focus: Opportunistic rainfall sensors, namely personal weather stations and commercial microwave links, together with rain gauge data from the German Weather Service, were used in different combinations to derive rainfall maps with a geostatistical interpolation framework for Germany. This kriging type framework considered the uncertainty of opportunistic sensors and the line structure of commercial microwave links. The resulting rainfall maps were compared to two gauge-adjusted radar products and evaluated to three reference gauge datasets in the respective study regions on both daily and hourly basis. New Hydrological Insights for the Region: The interpolated rainfall products from opportunistic sensors provided good agreement to the reference rain gauges. The dataset combinations including information from the opportunistic sensors performed best. The addition of rain gauges from the German Weather Service did not consistently lead to an improvement of the interpolated rainfall maps. On the country-wide, daily scale the interpolated rainfall maps performed well, but the gauge-adjusted radar products were closer to the reference. For the regional and local scale in Rhineland-Palatinate and Reutlingen with an hourly resolution, the interpolated rainfall maps outperformed the interpolated product from DWD rain gauges and showed a similar agreement to the reference as the radar products

    Causative classification of river flood events

    Get PDF
    A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large‐scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph‐based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space–time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods
    corecore